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ABSTRACT GRAPH SEGMENTATION PRELIMINARY RESULTS ON TRACKML
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A1,...,Akare small but A1 is relatively larger. GMMs generally achieve high combined Truth Efficiency

Dynamic kNN |

and Edge Efficiency across the full range of p,
The raw input of TrackML can be broken down into
e DkNN works on the basis of the principle of choosing the
oest k value to perform a kNN segmentation.

TrackML

e Comprises multiple events.
e Each event contains simulated measurements of
particles generated in a collision between proton

distinct subgraphs to simplify the tasks of downstream
track-finding.

bunches. e It re.curswely uses an lr\dlv.ldual observation frorp ’Fhe This will also be helpful in accelerating the training of
* Allevents are statistically independent and contain original sample for validation and the rest as training graph-based deep learning architectures on distributed
directional and unique particle information. data. systems.
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